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purposes.  The literature is reviewed and modifications to the 
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the algorithms for computer implementation of the parabolic 

approximation are discussed qualitatively, and the various 

approaches to dealing properly with the density change between the 

water column and the bottom are examined. 
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Preface 

The Environmental Acoustic Research Group at the Naval 

Postgraduate School is engaged in research to establish beneficial 

and detrimental environmental effects important to present and 

future Navy acoustic systems. 

Pursuant to the above objectives, environmental and 

acoustic models are used to interpret and predict, the complex 

results obtained when actual experimental or operational scenarios 

are utilized.  Acoustic parabolic wave-equation models are useful 

for long-range environmental acoustical studies.  However the 

basic assumptions and certain errors in the use of these models 

are not always obvious.  For this reason the present, work was 

initiated to provide a tutorial introduction mainly for use of 

students in the Environmental Acoustic Research Group at the Naval 

Postgraduate School and others interested in obtaining an initial 

orientation in this field of research. 

Presently five professors from the Departments of 

Oceanography and Physics are involved in this research as well as 

approximately ten graduate students. 
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I.   The Parabolic Wave Equation 

A.  Introduction 

Historically, the (Leontovich-Fock) parabolic-equation 

approximation was developed for dealing with electromagnetic 

propagation; see, for example, Fock (1965).  This approximation to 

the elliptical wave equation made its way into the area of 

acoustic propagation through the work of Hardin and Tajpert 

(1973), who applied the split-step Fourier transform method for 

its evaluation. 

Since its introduction, the parabolic equation has ^een 

subjected to substantial analysis in the acoustics community, and 

a variety of alternative nethods <x>r solving the equation have 

been developed.  It is the purpose of this report to present a 

fundamental introduction to the '-arabolic-equation aprroximati^n 

with some discussion of the more viable methods of numerical 

solution.  Some of the advantages and disarvantages of these 

methods will be noted, but detailed discussion of the problems and 

requirements in implementing these methods ac computer algorithms 

will not be treated; these lie beyond the simple introduction 

attenpted herein. 

For an overview of these .ind other met> )ds rf solving the 

wave equation and its various approximate forms, a good starting 

point is DeSanto (1979), and in particular the articles contained 

therein by DeSanto, and DiNapoli and Deavenport. 
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B.   Derivation 

If an acoustic pressure field of constant angular frequency 

u)  = 27Tf is assumed, then the source-free linear acoustic wave 

equation 

7
2
E - c-2$R/)t2) l.i 

where the speed of sound c is a function of space reduces to the 

Helmholtz equation (often termed the "time independent" wave 

equation).  For the spatial factor S of the pressure 

£ = S(space) exp(-icot) 1.2a 

this becomes 

72S + k2S = 0 

1.2b 
where 

k = o;/c(space) 1.2c 

If we now assume cylindrical symmetry and adopt cylindrical 

coordinates (r,z) where z represents depth and r is the horizontal 

distance from the z-axis, (1.2) becomes 

}2S/br2  + r~\}s/drj +  <}2S/c>z2 + k2S = 0 1.3 

It. is useful to define k in terms of an arbitrary constant value 

k0 and the index of refraction 

n • c0/c(r,z)    where   c*j/k0=c0 1.4 

so that 

k2 = n2kg 1.5 
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Let. us now write the solution for S in the for m 

S =  HJ1* (kQr)   f(r,z) 1.6 

which  when   substituted   into   (1.3)   results   in   the   equation 

rf/dr     +  d2f/d z     + 1   +     2 
r H(1)(k   r) dr j o o -/ 

dH^^k  r)j  >.       ..2 .2. O G       J (if    +    (k    -K    ) 
jr 

rl =  ° 

1.7 

If we  now  restrict   attention  to   ranges   r   such   that 

kQr   >>   1       and      H£
1}
 (*0

r) " V^^o^' exp[i (kQr-7T/4] 1.8 

then [  ] simplifies to 2ikQ and (1.7) becomes well-approximated by 

*h   ^2i ai     22 
—=• + —-» + 2ik — + (k -k )f = o 
h*2       ^r2     0^r 

1.9 

The pivotal  assumption  that.   f_ varies  slowly with  respect,  to   range, 

| a2f/^rl |   <<   |2k0£f/<)r 1.10 

results   in  the   "parabolic   (wave)   equation" 

a2f/dz2  +   2ik0Of/<>r)   +    (k/-k^)f  =   0 1.11 

The assumption (1.10) has some extremely important implications: 

(a)  The Helmholtz equation, an elliptic equation, has been 

reduced to a parabolic equation.  This means that the entire 

acoustic field need not. be solved for all relevant ranges and 

V... .••-...••.-••«•. \A.V  •:...'  ...   •»'-.'-.•.-- _.•-•• . ^  
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depths "simultaneously" subject to boundary conditions on a 

surface surrounding the volume of interest.  Instead, for an 

outwardly progressing wave, an initial boundary condition can be 

established for some small r and then solutions for larger r's 

obtained by increasing r incrementally.  This offers the 

possibility of a substantial saving of computer time and memory. 

However, the boundary condition (initial condition) assumed for 

the first range must be carefully selected.  This will be 

discussed later. 

(b) The parabolic approximation is equivalent to 

neglecting any back-scattering, since the solution at some range 

r^ is the source for the solution at some larger range r2 and 

is independent of any intervening changes in the speed of sound, 

depth of the water column, etc:  As the solution is stepped out, 

changes at larger r can have no effect on the fields previously 

obtained tor smaller r. 

(c) The parabolic assumption can introduce unavoidable 

errors in the details of the resultant acoustic field.  We shall 

demonstrate this by considering a particularly simple acoustic 

model which can be solved by both the Helmholtz and parabolic 

equations.  Comparison of the respective solutions will aid in 

revealing some of the inherent errors resulting from the 

parabolic-equation approximation. 

For use later, notice that for large kQr (1.6) becomes 

S= V2/(Trk0r)' f(r,z) exp[i(k0r-TT/4)] 1.12a 

*- '* '- •"•-"- •'- •'•'-•--•.-.-•.  ,-'.-•  ..•.•*...••.-•.•«-'.••« '» -'. -'.  »-•»•'. '- „'« •'. -»• • '. .-. » •» ,fk- '-i •ki-V« 
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and that the acoustic pressure in the parabolic-equation 

approximation has the form 

p_ = A V2/(7Tk0r) f(r,z) exp[i (k0r-T/4 ) ] exp(-i«t.) 1.12b 

with A an arbitrary constant and f_(r,z) the solution of (1.11). 

Recall this is valid for kQr >> 1. 

C.  The Range-Independent Case 

Let us assume that the speed of sound is a function only of 

depth and that any relevant boundaries arc also range independent. 

Direct solution of the Helmholtz equation (1.2) results in the 

well-known summation of normal modes 

2m= exp tMt) £  ^ V2) HiX) <kmr) *•«• 
m 

where the constants h^  are determined by the properties of the 

Zm and source depth, and the depth-dependent functions Zm are 

solutions of the equation 

jn + k2(z)-Jc2 Z = 0 
1  L      iJ "> 

d2z 

dz2 
1.13b 

The eigenfunctions Zm and the eigenvalues km are established 

by the function k(z), the boundary conditions at the top and 

bottom of the water column, and the properties of any ocean bottom 

(if important).  In the limit of large r each normal mode has 

asymptotic behavior 

2rn-exp(-i«at)AniZni(z) ^/(irk^JexpfKk^r- v)" 1.14 

-•--••-•-•-•-*-•- 
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Solution  of  the   same  problem  for   the  parabolic  wave   equation 

proceeds   analogously:      Let 

f     =   R   (r)Z   (z) 1.15 —m       —m m 

Substitute into (1.11) and perform the usual separation of 

variables.  The result is the pair of equations 

d2Z /dz2 + Ck2(z)-k2]Z  = 0 m mm 

and 

1.16a 

K 

* 

2ik (dR /dr) + (k2-k2)R  = 0 1.16b o  —m        m o —m 

Note that (1.16a) and (1.13b) are identical. 

Equation (1.16b) can be solved by direct integration to 

yield 

*m = exP 
f iJ^-r! 
V   2Ko   / 

1.17 

H 

Collection of  terms   reveals   the  parabolic-equation   solution 

(1) p'   = exp(-iwt)    £ A^   Zm(z)   IT      (kQr)   exp ( i 
m \ 

,2,2        \ 
k   -k \ 

m    o \  r l 

2k 

In the limit of large r, each term has asymptotic form 

pm-+ expHu*)^ Zm(z) 
o J 

1.18 

J4  r  k2 k2 1 

[«hs•«• H**-r - "«V     la9 
L   O J o i 

» 

•   I 
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From   (1.14),   we   see   that,   the  phase   speed  cm of   the  m-th   normal 

mode  is 

cm=cVkm 1.20 

whereas   from   (1.19),   the   equivalent   tern-   solving   the   parabolic 

approximation  is 

c'   = fi>2k    /   (k2  + k2) m o '       m o 1.21 

Were the acoustic field to consist of only a single mode, 

m = M, then the choice kQ = kM would exactly eliminate the 

phase speed error, and the solution of the parabolic equation 

would be identical with that of the Helmholtz equation. 

Unfortunately, this is not usually the case.  However, since kQ 

is an arbitrary constant, it is clear that if the acoustic field 

is composed of a set of normal modes whose values of km all lie 

very close together (a "narrow band" of modes), all other modes 

being negligibly small or absent, then the choice k0 = <km> 

where the average <> is taken over just this narrow band will tend 

to minimize phase errors.  Even here, however, the errors may not 

be trivial. 

First, we see that except for the special case kQ = kM 

the phase speed c_ for the normal mode is different from the 

analogous phase speed c^, for the equivalent term in the 

parabolic solution.  This means that the spatial pattern of the 

phase-coherent combination of the pressure terms will be 

distorted.  There is an additional and equally important effect 

resulting from the fact that the phase speeds for individual modes 

• •----- - .•.-•- -•-• • • • •IUIJI . . ........ -. .- 
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do  not  change proportionately with   those   for  the  equivalent   terms 

in  the parabolic  equation.     Differentiation of  cm with  respect 

to km yields 

AC!/**_  =   - t»/k*  =  -   e  A mm m mm 1.22 

whereas the same operation applied to cm results in 

Ac'/Ak    = - c'2k/(kf + kh   = - c A mm mmm o mo 1.23 

Thus, the analogous phase speeds are not related simply by a 

constant, which would merely "stretch" or "shrink" the entire 

interference pattern with respect to range.  Instead, the detailed 

interference pattern of the acoustic field will also be changed. 

For a clear example of these effects, see Fig. 5 of McDaniel 

(1975-1). 

An estimate of the maximum range for which the parabolic 

equation retains sufficient, accuracy can be obtained following the 

development of Fitzgerald (1975): 

Assume that the acoustic field is made up primarily of a set 

of strong modes with indices m lying between m(max) and m(min). 

This could correspond to a field consisting of trapped modes in a 

mixed layer, a shallow-water channel with a fast bottom, or the 

deep sound channel. 

To minimize error, set 

or, almost equivalently, 

*o " <*m> 

<c'> ^"m 

LA -  •" '-   "-'- •  -  *  •  .-......-.  •"  • -  - .-•••••  - •-'-••••--•—' -.•-•.-.. -.1..1.. 
_  •  -     _ - , 
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since either will be about, half way between the values found for 

n(max) and m(rain).  Define 

and 

*c'*lcm(max) c0l« k I IT m(min) 

Äks/ m(max) - k *•*    k <s5 My m(min) 

-°o\ 

-  k 

1.24a 

1.24b 

The accuracy requirement can be approximated by the condition 

m o 

2ko 
m 2 

m = m (max) or m(min)  1.25a 

Elementary manipulation with (1.24) yields 

r < Trko/(Ak)
2 

1.25b 

or, with the help of C^CQ«*^, 

r < TTc^/[ü>(Ac')2]. 1.25c 

Equation (1.25) is somewhat less restrictive than Fitzgerald's 

result, but serves as a reasonable guideline.  Note the explicit 

frequency dependence in (1.25c):  For a given family of excited 

modes, the maximum permissible range for given accuracy will 

decrease with increasing frequency. 

D.  Improving the Accuracy of the Parabolic Equation 

(1)  The "Pseudoproblem" 

In the light of the phase-coherence difficulties 

discussed above, Brock et al. (1977) investigated the feasibility 

of modifying the problem to reduce these effects.  They were 

guided by ray-tracing predictions of the turning points of the 

•i:.--;;v:v.v:-.v.c.-:vvv:-.Ji^i--L:l-:^^:. • :•>.•- ..••: ••:•••.•:-.;..-;-.-_ .•:•.•••/ :•,-•. . 
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rays and the requirement of matching the normal node and parabolic 

phase speeds, at least over the narrow band of :'m's required for 

the validity of the parabolic equation (1.11).  Based on these 

considerations, they determined that an approximate analogous, 

"pseudoproblem" could be formulated for which the index of 

refraction and the depth at which a particular sr-^ed ©f snund was 

found were adjusted according to the mapping 

(n,z)-»-(n*,z*) 1.26a 

where 

n*fts"(2n - 1)** 1.26b 

z*%-n z 1.26c 

Utilizing this technique, they determined that sensitivity to the 

choice of cQ was considerably reduced, and the m edictions of 

the transmission loss given by the "pseudoproblem" matched those 

predicted by the normal mode solution of the original problem much 

better than the solution of the parabolic equation without the 

mapping of (n,z) . 

While these results were obtained for the range- 

independent case, the authors make the plausible assertion that if 

in a range-dependent nroblem the mapping is to be done at each new 

range step, then the improvement of results over those without the 

mapping should be about 'he same as for the range-independent 

case. 

(2)  Alternative Equations 

It should be pointed out that (1.11) is not the only form 

that a parabolic approximation to the wave equation can take. 
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Indeed, several investigators have made rather extensive studies 

of alternative forms and more accurate approximations.  We shall 

confine our discussion but provide references for the reader 

interested in pursuing these extensions further. 

McDaniel (1975-2) studied several methods of separating 

solutions to an asymptotic wave equation into outgoing and 

incoming components.  Depending on f e »ethod, when .^ny 

back-reflected (incoming) component is neglected, modified 

parbolic equations result which, when compared to the asymptotic 

wave equation, reveal errors of various orders.  Of the three 

cases studied, two led to second-order TTOLS *nd one led to 

fourth- order errors.  The commonly-encountered parabolic equation 

(1.11) was one of the second-order cases.  In addition, numerical 

analyses using different algorithms were performed and results 

were checVed for internal consistency v>y oxehanging source anf' 

receiver positions and verifying that acoustic reciprocity held to 

reasonable accuracy. 

Palmer (1976) investigated improvements to the >ikonal 

equation and approximations to normal-mode theory by assuming that 

the Fikonal equation can be applied in the horizontal pla^e.  Thi>- 

leads to expressions for the normal mode coefficients and the 

development of an appropriate Green's function«  After rat) er 

elaborate mathematical development, some modified parabolic 

equations can be extracted. The  tf rust of the discussion, 

however, is toward a further understanding of the plausibility of 

the physical restrictions necessary to justify the validity of 

discarding small-order terms in the Helmholtz equation to obtain 
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a parabolic equation. 

An investigation by DeSanto (1977) into the mathematical 

relationship between the solution to the Helmholtz equation, S, 

and the solution f_ to the parabolic equation (1.11) yielded a 

collection of correction terms.  DeSanto's approach was to assume 

that S and f_ could be related by an integral, 
.«"O 

S(r,z) = AQ I f (y,z) R(y,r,z) exp[B(y,r)]dy 1.27 

where AQ is constant, R and B are unknown functions, and y is 

the dummy variable of integration.  (The above integral is for 

cylindrical coordinates, a special case of the more general 

formulation accomplished by DeSanto.)  If this is substituted into 

the Helmholtz equation and k(r,z) written in the form 

k(r,z) = k (z) + k2(r,z)   where k1 » k_ 1.28 

then it is possible to obtain B and the functional dependence of f 

on y by requiring self-consistency.  What remains is a 

differential equation for R.  DeSanto then shows that the solution 

f_ to the parabolic equation (1.11) results from the stationary- 

phase approximation of the integral (1.27).  Retaining higher 

accuracy in evaluating the integral provides correction terms to 

the parabolic equation and therefore to f_.  In a later paper, 

DeSanto, Perkins, and Baer (1978) begin with a "corrected 

parabolic approximation" [compare with (1.12a)] 

S =y^7(TTkor)
1 exp[i(kor-7T/4)irf+(ir/2k) (<}

2fA)r2)]  1.29 
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derived in the earlier paper, and note that this can be adopted 

very easily into the algorithms solving for f.  The procedure is 

to step out the solutions to f_ two range increments from r and 

then use the numerical approximation for the second derivative 

with respect to r evaluated at r + A r, 

2 

i? 
f(r+2^r,z) - 2f(r+ar,z) + f(r,z) 
  = f"(r+^r,z) 2 r +Ar,z (Ar) 

1.30 

and the value of f predicted at the first of the two range 

increments is corrected by 

fc(r+4r,z) = f(r+£r,z) + (iar/2k)f"(r+£r,z) 1.31 

where the subscript "c" designates the corrected value.  Their 

comparisons between solutions obtained from normal modes, the 

parabolic approximation, and the "corrected" parabolic 

approximation suggest that the errors introduced by the parabolic 

approximation are roughly halved.  However, this approach requires 

about twice the computer time and three times the memory compared 

to the uncorrected parabolic approximation. 
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II.  Boundary Conditions for the Parabolic Equation 

Except for special cases, the parabolic equation, like the 

Helmholtz equation, does not yield analytical solutions-, for space- 

dependent speed of sound profiles or irregular boundaries. 

Instead, numerical nethods must be adopted.  Ther? are e number of 

numerical techniques now available for use with the parabolic wave 

equation.  We shall mention some of f'ose f at are currently 

popular. 

The major drivinq forces developing computer algorithms for 

numerical solutions are that computers are limited in available 

memory and computer time is expensive.  A<^ a result, emphasis has 

been placed on fast-running programs which require relatively 

little memory.  Since the parabolic equ-t:on is designed to be 

stepped out in range, it is important to use techniques which 

allow the largest possible increments in both depth and range. 

Since each step requires numerical mathematical manipulation of 

input data and the results of the previous range step, efficient 

computational schemes are required.  In this report we say little 

about these aspects of the problem; our purpose is? to describe the 

methods rather than discuss the details of their advantages or 

disadvantages as far as computer implementation is concerned. 

Before turning to the models, it is necessary to discuss two 

aspects of the parabolic equation which are common to all methods 

of solution.  In every case, it is necessary to begin the 

computation with an input data set of the values of f_ at some 

initial range as a function of depth.  This is the initialization 
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problem.  The second aspect, is that of treating the boundaries of 

the water column and bottom.  There is little difficulty with the 

surface, which is represented by a pressure release boundary so 

that at zero depth f(r,0) = 0 for all r.  However, the bottom, if 

an important aspect of resultant acoustic field, presents some 

difficulties. 

A.  The Initialization Problem 

Whatever set of values for f_(rQ,z) at the initial range 

rQ are chosen, they must be consistent with the acoustic source 

generating the pressure field.  It is therefore useful to obtain a 

few results for an omnidirectional point source located at (0,Z) 

in an ocean whose properties vary only with z.  This "boundary 

condition" can be built into the acoustic wave equation by 

including a "source term". 

If the omnidirectional source has unit pressure amplitude at 

a distance of 1 m, then the appropriate inhomogeneous wave 

equation in cylindrical coordinates is 

\v2  + k2(z)J S = -2$<r) 5(z-Z)/r 2.1 

The presence of the term on the RHS guarantees that 

lim lim      I = [r2+(z-Z)2] h  exp[ikVr2+(z-Z)2 ] 

2.2 

Given that conditions exist for the trapping of sound 
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in a channel, it. is plausible to perform the separation of 

variables 

—  ^— —m    m 2.3 
m 

and  assume  that,   the  Zm satisfy 

d2Zm/dz2  +   [cu2/c2(z)   -  k2]Zm =   0 2.4 

the appropriate boundary conditions,and are normalized.  Then, 

the Zm form an ort.honormal set. of eigenf unctions.  Substitution 

of these results into (2.1) yields 

Z_ i d2R /dr2+r~1(dR /dr)+k2R!Z  =  -2^(r) S(z-Z)/r «•  i-  -ni —m     m—-m •   m m 
2.5 

If bot.h sides of this equation are multiplied by Zn(z), 

integrated over z, and use made of the ort.honormalit.y condition 

/ 
Z  Z  dz = h m n       mn 

then the result, is 

d2R  /dr2   +  r_1(dR  /dr)   +  k2R     =   -2<kr)Z   (Z)/r —m —m m—m m 

2.6 

2.7 

which  is  solved by 

(1) R    =   ilTZ   (Z)   H   vx/(k   r) -*n mom 
2.3 

Now, if (2.7) is substituted back into (2.5), we obtain the 

useful relationship 

7"  Z (Z) Z (z) = S(z-Z) fc i    m       m 
2.9 

m m    m 
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This expression ignores the collection of continuous 

eigenfunctions, since these, practically speaking, contribute 

nothing to the acoustic field at ranges of interest. 

(1)  The Gaussian Field. 

When an omnidirectional source of sound is reasonably 

distant from either the ocean surface or any bottom, then the 

source may be approximated by a Gaussian pressure field for the 

initial set of pressure as a function of depth.  The difficulty is 

to determine the parameters of the Gaussian distribution to 

"match" the point source to the particular propagation problem 

under consideration. 

In the immediate vicinity of an omnidirectional source 

which is not too close to any reflective boundary, the amplitude 

of the pressure must decrease with distance from the source, 

according to spherical spreading.  For such a source located at 

(r,z) • (0,Z) therefore, from (1.2) the amplitude of the radiated 

pressure must be given by 

P = ir2 + (z-Z)2yh 2.10 

(Recall we are in cylindrical coordinates with radial symmetry and 

have assumed unit pressure amplitude at a distance of 1 m.  This 

amplitude choice facilitates conversion between source level SL 

and pressure amplitude for sources of arbitrary strength.) 

In the case of an infinite, homogeneous medium the source 

with amplitude given by (2.10) and angular frequency 6)  must be 

described by an appropriate collection of delta functions at (0,Z) 

However, all the energy radiated from the source does not find its 

way into the sound field trapped by the sound-speed profile. 
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Instead, energy can be lost, through interaction with the bottom. 

Thus, rays whose angles of elevation or depression exceed certain 

limits will be lost to the channel at large ranges, and the source 

appears as if it. is not. a point, source, but instead possesses 

vertical directivity. 

Brock (1978) presents one way of incorporating this 

apparent directivity into the parabolic equation initialization: 

Assume that in the volume of water surrounding the source 

at (0,Z) acoustic conditions are relatively uniform.  Then we can 

treat, k as constant for z~Z and r-0.  If we then take 

k = kQ = o;/c(Z) 2.11 

where c(Z) is the speed of sound near the source, the parabolic 

equation (1.11) simplifies to 

a2f/dz2 + 2ikQ(df/c)^ = 0 2.12 

Within the volume for which (2.11) is a reasonable approximation, 

but. still under the condition kQr >> 1, we require that the 

amplitude of the solution to (2.12) be consistent with the 

amplitude P' given by (2.10).  We can then extrapolate f_ back to 

r = 0 and obtain an extrapolated equivalent, boundary condition 

along the z-axis.  (Physically, this seemingly-artificial approach 

is equivalent to taking the far-field behavior of a directional 

source and extrapolating it. back to the position of the source, 

thereby ignoring near-field effects.) 

18 
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1 
- *                                                                                                                                 . /                                               Thxs   extrapolation   is   accomplished  by  reversing   the   steps 

of  the  argument.     Postulate  that,  the  equivalent   boundary   condition 

for   f   at   (0,z)   is   given  by   the  Gaussian   distribution 
4 

- - 

i 

• 

f(0,z)   =  F  exp[- (z-Z)2/cT2]                                                                2.13 

1 
where  F  and cr are   to  be  determined.     With   this   as   an   initial 

:" condition   (and  requiring   that   f   vanish   at.   large   r),   according   to 

I 
** 

Brock  the  solution of   (2.12)   can be  verified   to  be 

t                                         f(r,z 

> 
r                         1                      "           f                 1 

- 

i 

)   =   [Fr4(r)]expj-(z-Z) V[*g-(r)]j                                           2.14a 

• 

2 g(r)   =  1  + t 2r/(kQ^
z)                                                                     2.14b 

• Now,   substitute   (2.14)   into   (1.12)   and,   since  we  have   two 

I arbitrary  constants,   set.  A =(TTk /2) 1/2   for   convenience. 

• Next,   take  P  = f fcj, 

.   ,^ ^' 
P = f(r,z)|   /Yr                                                                                       2.15 

i 
Brock's  result,  is 

m 

?            of/   / *P\          f       ?            ?          ?          2   J)                      2.16a 
P^   =   (FVr)(h/l/l+h   ,' exp--2ti   (z-Zr/[<r/(l+h/);]- 

1 
•• 

• 

with 

* 
I 

I 

h  =  i k   <r2/r                                                                                                     2.160 2     o 

The  next,   step   is   to   expand   (P1)2   and  P2   in  power   series.     For 

(P')2,   assume   that   [(z   -   Z)/r]2   is   small.      For  P2,   assume 

: 
; 19 
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that   the  exponent,   in   (2.9a)   is   small.     This   leads   to   two   power 

series   in   [(z   -   Z)/r]^,   and  equating   coefficients  of   the   leading 

two   terms  yields   the  results 

<T = v/2>kQ 2.17a 

F  = \/2/ko/<r   =   JTQ 2.17Ö 

Thus,   the   initial   values  of _f   are   given  by 

r-1 2 2 2-ld 

f   (0,z)   =    ./jTexpC-k^Cz-Z) 72] 

for an omnidirectional source with unit, pressure amplitude at- 1 ta. 

Direct substitution of (2.17a) into the exponent, of 

(2.16a) reveals that the exponent, is small if [(z - Z)/r]2 is 

small.  Thus, the physical implication of the approximations 

leading to (2.18) from (2.16) is that the omnidirectional source 

is approximated by an equivalent directional source whose acoustic 

axis lies in the horizontal plane and whose beamwidth satisfies 

the requirement of relatively small angles of elevation and 

depression.  It must, be noticed that the Gaussian-field approach 

may run into difficulties if the source is too close to the water 

surface or the water-bottom interface.  In either of these 

situations, the Gaussian field may intercept the boundary before 

it has become negligibly small.  As a rough criterion, the source 

should be removed by several <r from any boundary. 
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(2)  Normal Modes 

While the Gaussian field initialization has the advantage 

of beginning with a field which varies rather smoothly with depth 

and, if fairly narrow in width, appears to be a reasonable 

approximation to a point, source (at. least, to the eye), it is not 

universally accepted as being without inherent, error.  See, for 

example, Wood and Papadakis (1980).  An approach based on normal 

modes can be conceptualized as follows: 

For ranges near the source, outward propagation can be 

described by assuming that the speed of sound profile and bottom 

properties are uniform throughout the medium (this includes the 

depth).  The Helmholtz equation (2.4) can be solved numerically to 

obtain the depth-dependent eigenfunctions Zm(z).  Since the Zm 

form an orthonormal set, they can be used to represent, a point 

source.  Then, for a point, source at (0,Z) of unit, pressure 

amplitude at. r = 1 m, we have from (2.9) and (2.8) 

S(r,z)   =  ilTL Hi1) (k
m
r)   zm

(z)   zm
(z) 2-19 

' *—•    o m m m m 

(1.6)   allows  us  to   form an  initial  expression   for   f_(0,z), 

f(o,z) = i-rr)_ z (z) z (z) 2.20 
— *—     m m ID 

Because of the small angular-aperture assumption implicit, in the 

parabolic equation, and also because in most situations of 

practical interest only modes corresponding to rays with small 

angles of elevation and depression with respect to the horizontal 

are trapped, the summation over m can be restricted just, to that. 

subset, of Zm satisfying these conditions.  Notice that since 
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only this subset is to be retained, the Helmholtz equation must be 

solved only to obtain this subset which results in a substantial 

saving in computer running time. 

Given the initial expression (2.20), the discrete depth 

values zm are specified, the associated f(0,zm) found, and the 

solutions for increasing ranges stepped out.  If practical aspects 

of the problem preclude starting at r = 0, the normal modes will 

have to be allowed to propagate out to the minimum range rQ at 

which the parabolic equation can be implemented.  In such a case, 

errors introduced as a result of approximations necessitated in 

utilizing the normal mode problem must be studied carefully.  For 

example, the bottom may have to be unrealistically smoothed out to 

ro« 

For an example utilizing a normal-mode starter (and 

displaying some of the difficulties encountered), see Guthrie and 

Gordon (1977). 

(3)  Ray Tracing 

Another approach to obtaining an initial set. of values 

for f_ at. some finite range rQ from the source involves phase- 

coherent ray tracing.  From a practical point, of view, this has 

appeal, since interactions of any ray with the bottom can be dealt. 

with by introducing the appropriate plane-wave reflection 

coefficient as long as the source is several wavelengths away from 

the bottom.  The required family of rays is traced out. to the 

desired initial range, with all phase information retained 

(including that arising from surface and bottom reflections), and 

then combined to give the resultant, pressure distribution at. 
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(rQ,z).  From this, f(r0,z) can be obtained and the f's for 

larger ranges found by stepping out with whatever algorithm is 

used to solve the parabolic equation.  For an example, see Guthrie 

and Gordon (1977). 
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B.  Treatment of the Bottom 

Adequate representation of the bottom uns been a difficulty 

with the parabolic wave equation.  The seriousness of the problem 

and how it is dealt with depends on :-he algorithm used in stepping 

the solution out in range. 

We can say that nany of the approaches fall into three 

categories: 

(a) Reflection of the equivalent rays from the bottom allows 

the reflective loss to be given as a function of the apparent 

angle of incidence of the ray on the hot om.  This ran b^ either 

specified as input, or calculated according to some formula.  The 

possibility of the bottom depth v -"'ing J:; function of rangt- is 

included.  (If attention is restricted to sufficiently large 

range, of course, all rays less grazing than critical can be 

neglected since these correspond to bottom bounce paths with 

appreciable transmission into the bottom at each interception.) 

However, the determination of what particular rays are striking 

the bottom at each specified range is a nontrivial process, and 

the models and techniques used in this determination often contain 

rather sweeping approximations and nay impose nuestionable 

requirements on the depth dependence of the speed of sound and the 

absorption coefficient in the bottom.  An example of this approach 

can be found in the report by Stieglitz et al. (1979). 

(b) The speed of sound and the absorption coefficient can be 

specified as functions of depth by a complex index of refraction 

for the bottom, and this information built into th*» algorithm. 

Depending on the computational scheme, it may be necessary to 
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prohibit any discontinuity in c(z) at the water-bottom interface 

by allowing c(z) to change rapidly but smoothly over some small 

interval in depth about the interface, and to have the bottom 

absorption coefficient rise with depth from zero at the interface 

to finite value at larger depths.  In this method it may be 

necessary to introduce an artificial pressure-release boundary at 

some appreciable depth in the bottom.  This step is not 

particularly troublesome, if done correctly: For an absorbing or 

non-absorbing bottom, the acoustic field will eventually begin to 

decay quasi-exponentially so that the energy found at all but 

shallow depths in the bottom becomes quite small; if this is 

allowed to be reflected back up through the bottom and into the 

water, the error introduced into the resultant acoustic field is 

negligible if the reflecting surface is deep enough.  See, for 

example, Williams (1975) and the references he cites. 

(c)  If the algorithm permits, the water-bottom interface can 

be built into the computer code directly in terms of the boundary 

conditions of continuity of pressure and continuity of the normal 

component of the particle velocity.  Let the water be labeled 

fluid 1 and the bottom fluid 2, and assume a flat bottom at depth 

z = ZB.  Then (for a flat horizontal bottom) the boundary 

conditions on f become 

HV = i2
(V 2-21 

and 

p^Of^z)   =,V1(^2^Z)ZR 2.22a 
b o 
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Notice that if the bottom is not flat, so that ZB is itself a 

function of range, (2.21) remains the same but the continuity of 

normal particle velocity takes the more general form 

pi     n-(   V^lj,     =     p"1     n-(   7f2)z 2.22b 

where  n  is   the  unit   normal   to   the  bottom  at.   coordinate   (r,ZB). 
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III.  Methods of Solution 

There are, of course many different ways in which solutions 

to the parabolic equation (1.11) can be attempted.  As with the 

Helmholtz equation, closed-form or analytical solutions are 

available only for certain special cases.  As a consequence, 

solutions are accomplished numerically with algorithms resulting 

in efficient computer use.  As might be expected, the more 

complicated the case, the more difficult the solution.  Certain 

methods of solution are useful and of sufficient accuracy only 

when the bottom is not important to the problem, as in the long- 

range propagation in the deep sound channel when the bottom of the 

channel lies well above the ocean floor, or when the bottom is 

sufficiently well-matched that it can be treated by fairly simple 

approximations.  More recent methods have been developed which 

allow more realistic inclusion of a bottom.  Our approach here 

will be to outline a few of the methods in roughly chronological 

order of appearance, but leaving detailed discussion and the 

consideration of fine points and subtleties for the interested 

reader to discover from the references. 

Before discussing the methods, we shall develope a single 

formalism to unify the discussion.  Rearrange (1.11) to isolate 

the derivative with respect to range, 

^f/dr      =   !"iji(k2-k2)/k     +   (%i/k   )(<)2/^z2)   f 
3.1 
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Following the fundamental lemma of calculus 

»\f   lim £<r+Ar>z)   - £(r>z) 3.2 
3 r  ir->o "   4r 

we can turn this into an equation involving the increment ^.r in 

range, which provides the basis for the numerical incrementation 

of range, 

f(r+dr,z) = jl + (£r)i5iko(n
2-l) + (Ar)(»*i/ko>(rf

2/0z2) f(r,z)     3-3 

If we define  the operators 

a   =   a,i(k2-k2)/ko   =   ^iko(n2-l) 3.4a 

b   =   i/(2kQ) 3.4b 

n2       i2/>   2- D     = d   107, 3.4C 

then (3.3) assumes the form 

f(r+Ar,z) = | l + Ur)a+(4r)bD2lf(r,z) 3 • 5 

The operator a describes the refractive properties of the medium 

(and may include those of the bottom).  It is thus a function of 

range, depth, and the constant kQ.  The product of operators 

bD^ describes the depth dependence of f_. 

If we make use of the expansion of an exponential, 

exp(x) = 1 + x + 0(x2) 3'6 
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then   it.   is   clear   that we   can  write   (3.5)   symbolically   in   the   form 

f(r+3r,z)   =   e*r(a+bD   )f(p>s) 3,7 

if  J£r[a +  bD2]f f <<J f_| .     The  reason   for  this   representation   is 

that  it will  allow manipulation of  the operators   to  be  brief  and 

simplified.     For  example,   note  that  the  manipulation 

A + B AB e = e    e 

is   identical with 

1   + A  + B  =   (1  + A) (1   + B) 

through terms of first order in A and B.  The difference between 

the two sides of the above equation is 2AB, which is of second 

order.  As can be seen, for small Ar  the operators a and bD2 

acting on _f produce terms which are substantially smaller then f 

itself, so this symbolic formalism is useful. 

A.  the Split-step Fourier Transform 

This approach makes use of the Fourier transform and its 

inverse to eliminate the second partial with respect to z.  There 

are two forms in which this can be done; we first consider the 

form which appears to be used most widely. 

Let us define the symmetric complex Fourier transform pair 

3.8a F   (     )   = 

£1( > = 

/IF J_ 
/    \    lsz J (     )   e        dz 

mr 
i      «      -isz, (     )   e ds 3.8b 

OO 
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where ( ) represents any reasonably well-behaved function of s in 

the transform (3.8a) and any reasonably well-behaved function of z 

in the inverse transform (3.8b).  (For the required mathematical 

properties defining "reasonably well-behaved", consult any 

standard text on transform theory.) 

Let us apply the transform pair to the RHS of (3.7) after 

utilizing the approximation 

e*r(a +bD
2)   e Ur)aeUr)b_D2 3>9 

Now, 

2 _ / arbD c \      1      f      Ar  bD c     isz, 
^s(e  " V    =       Y^T '        ie   dz 3.10 

and 

'- OO 

2 2 arbD _ isz    ..     , d      , c  isz e — fe   as (1 + Arb —-- ) f e 
"dz2  ~ 

tc   (1 - Arbs2) f e1SZ 

« e "Ar^s' f eisZ 3.11 

2, 
Because the integration in (3.10) is over z,   exp(-Arbs ) can be 

factored out, 

F [exp(.irbD2)fJ«exp(-4rbs2)F (f) 3.1^ 

and  the   inverse  transform   (3.8b)   applied, 

exp(ArbD2)f «f1 [exp(-Arb.s2 ) Fg( f)] 3.13 
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It.   then   follows   at.  once   from   (3.9)   that. 

jAHaW)^ ra)F:ire(-,rbs2)F ] 
3.14 

and   insertion of  this   into   (3.7)   yields   the   split-step   Fourier 

transform result. 

f(r+/sr,z)   =   exp(^ra)F_1[exp(-Zlrbs2)F   Cf>] 3.15 

where a and b are given by (3.4a) and (3.4b).  Notice that, they 

yield purely multiplicative factors.  Examination of (3.15) 

reveals that, the algorithm can be viewed as dealing with 

diffractive effects by the exponent multiplying Fg and 

refractive effects separately by the exponent, multiplying the 

inverse transform. 

Detailed investigation of the errors introduced by use of the 

exponential approximations is involved and results in rather 

difficult, expressions to interpret.    However, Jensen and Krol 

(1975) have investigated the results for situations typically 

encountered in the ocean and obtained relatively simple criteria: 

For cases of practical interest, the errors introduced in 

predicting the behavior of f_ over the range increment. Ar are 

bounded by the larger of 

J2(6>/co) (dn/dz)är (df/6z)l 
3.16a 
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or 

|f(^/co)(3n/3z)Är]
2f 3-l6b 

These reveal that, if f_ is not sufficiently slow in its depth 

variation, then the error increases linearly with frequency and 

linearly with the range increment.  For sufficiently slowly 

varying f, however, the error depends quadratically on both these 

quantities• 

When (3.15) is implemented on a computer, the Fourier 

transform is replaced by its numerical counterpart, the FFT.  This 

results in a fast-running algorithm which deals with a finite 

number of terms.  The FFT requires a finite depth over which it is 

applied, so an artificial bottom (pressure release) must be 

inserted at some distance below the water-bottom interface.  Given 

this interval in z, the depth increment can be selected for 

application of the FFT.  It must be noted, however, that running 

time increases fairly dramatically as the number of depth 

increments N is increased.  Guthrie and Gordon (1977) estimate 

that the time will increase approximately as log (NN).  This can 

place rather drastic restrictions on the variation of th< index of 

refraction n(r,z) with depth, since the number of points in depth 

must be great enough to reproduce with fairly high accuracy the 

details of the speed of sound gradients. 

An additional problem with the split-step Fourier transform 

approach is that the change in density between water and the 

bottom cannot be considered.  While the reflection coefficient at 
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at the water-bottom interface is considerably more sensitive to 

changes in the speed of sound than to changes in the density, if 

the change in the latter is too great, realistic predictions 

cannot be expected from the algorithm.  Attempts to surmount this 

difficulty by using equivalent, rays and specifying the reflective 

loss (and phase angle) at the interface have had mixed success. 

Indeed, pessimism has been expressed as to the utility of this 

algorithm in situations for which the bottom is an important, 

element of the propagation problem; see, for example, Jensen and 

Krol (1975) and Brock (1978).  Further, inclusion of a bottom 

increases running time considerably.  Jensen and Krol (1975) have 

compared computer times for split-step parabolic, normal mode, and 

ray programs for deep water (for which the bottom is not. 

important) and shallow water for which the bottom is important. 

There is considerable variation in running times, but in 

particular for their case the shallow water problem led to 

extremely long running times for the split-step approach. 

The second form of the split-step Fourier transform approach 

has been described by McDaniel (1975).  This is based on an 

alternative formulation of the RHS of (3.7) presented by Tappert 

and Hardin (1974), 

exp[ar(a+bD )]« exp(ara/2 )exp(ArbD )exp(.Ara/2) 

Application and manipulation of the Fourier transform, its 

inverse, and the exponential terms proceeds much as before, and 

33 

Ü •- ,.•,..» . .•••...  . ••..-.- -•, _•...._- .. . . I I» ».'•!>  ..!*,  I«tt    rtK, llJ,,.^,.^»*...,!! H.,,Cl fcufc «,ltl«.ll»  .„! 



';.«.. •.. ',~\.',. -,-'.- *~- *:-.•"•-.'•*-' :•" 
r^-^y •_.   •  -  • • ' .• i« »I • ^ 

the details are uninteresting.  The result is 

f(r+Ar,z)*e
Ar^/2p-1fe-'4r^sF .'e^^2 fS! 3.17 —s [     —s^     — __ 

Comparison of this result with the analogous (3.15) reveals that 

the index of refraction has been treated a little more ca' -«fully. 

When (3.17) is analyzed for the dependence of errors on   the range 

increment, it appears that the error depends on (^r)^ which is 

an improvement over the errors resulting from the approximations 

leading to (3.15).  What restrictions must be placed on £tZ, 

however, by the introduction of n(r,z) into the Fourier transform 

over z do not seem to have been isolated. 
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B.  Alternatives to the Split-step Method 

Within the last few years, there have been a number of 

alternative approaches to developing efficient algorithms for 

solving the parabolic equation (1.11).  We will mention three 

closely related articles which provide a rather interesting line 

of evolution.  All of these discard the split-step technique with 

its associated use of the FFT direct and inverse numerical method. 

Instead, the second derivative with respect to depth is calculated 

numerically from the depth increments by the use of a central 

finite-difference approximation.  Since the approaches based on 

this technique require more detailed specification of the 

coordinates of any spatial point on the range and depth mesh, we 

will adopt a convenient formalism which, although somewhat 

unconvential, is easily followed and succinct.  Since the depth 

below the ocean surface can be written as zm = m 6z where JNz is 

the chosen depth increment, and the range can be written as rn • 

n Ar, let us define the shorthand 

f(r ,z ) = f(nar,maz) 5 f[n,m] 3.18 — n m   — 

(Note that n need not begin with n = 0.  If the parabolic equation 

is initialized at some finite range, then the appropriate finite 

value of the initial n can be used.)  The underbar on the RHS has 

been suppressed for notational convenience.  It is to be 
p 

understood that f[n,m] is complex. 

* 
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Now, it. is straightforward to see that the second depth 

derivative can be estimated numerically by the formula 

d2f I  f[n,m+l] - 2f[n,m] • f[n,m-l] 3 19 

By use of (3.19), Lee and Papadakis (1930) cast. (1.11) into 

the form 

2  ' 
df[n,m]/dr = a[n,m]f[n,m] + [b/C'z) ]^f[n,m+l] - 2f[n,m] + f[n,m-l] 

~      i. 

3.20 

where the operators a and b have been defined previously, (3.4). 

(It. is worth recalling, for this discussion and what, follows, that, 

b is simply a constant, and that a depends functionally on depth 

and may also depend on range through the square of the index of 

refraction. )  This equation reveals that, the first, range 

derivative of f at. some point. [n,m] depends on the  values of f at. 

the adjacent, mesh points characterized by [n,m+l], [n,m], [n,m-l]. 

Thus, (3.20) provides a set. of first.-order ordinary differential 

equations, each of which is coupled to its immediate neighbors in 

depth.  While this may appear to require a considerable amount, of 

storage when these matrices are programmed into the computer, the 

fact, that the coupling involves only adjacent, depth values 

collapses the matrix representing the RHS of (3.20) to a 

"tridiagonal" form for which all elements are zero except, those 

whose depth indices are m, m + 1.  The depth incrementation is 

halted at. the bottom, and Lee and Papadakis let the element. f[n,M+l] 

represent, the value of f at. the bottom. 
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Note  that  M may  itself  be  a  function  of  n,   so   that  a  sloping  or 

irregular ocean-botton  interface   is   allowed.     The  range-depth  mesh 

does  not  project  into  the bottom.     In  this   sense  this   approach   is 

incomplete,   but   the   authors   avoid  this   difficulty   to   some   extent 

by  invoking  a boundary  condition 

Vfc-n  +    2f(s)p_ =  Ü 3.21 

A 
where  n is   the   local  normal   to   the  interface  and  s  specifies   the 

line of  the  interface  in   (r,z)   space.      It  can be  quickly  seen   for 

monofrequency  sound  that  this   is   equivalent   to   the   condition 

-ii)u«n  + c<(s)p_ =  0 3.22a 

which can be rearranged to yield the form 

p/(u-n) = i&'/cx(s) 3.22b 

Thus, i&V<* represents the ratio of the pressure a to the 

component of the particle velocity u locally normal to the bottom. 

For the case of a flat horizontal bottom, (3.21) takes the form 

^p_/tfz + o<(r)£ = o at the bottom 3.23 

Equation (3.23) can be solved by B = expt-tfaz), and the 

numerical equivalent for specifying the interface value f[n,M+l] 

is 

f[n,M+l] = f [n,M]exp( -<*[n]Azj 3.24a 
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At. the ocean surface, of course, the pressure must vanish and the 

surface boundary condition is 

f[n,0] = 0 3.24b 

The authors solve two cases: a perfectly-rigid, flat, horizontal 

bottom and a perfectly-rigid, flat, sloping bottom.  For both, 2i  = 0. 

Results are compared respectively with a normal mode solution 

(horizontal bottom) and a method of images solution (sloping 

bottom), and are found to be in very good agreement. 

In a later paper, Lee, Botseas, and Papadakis (1981) 

reinvestigated the solution of (3.20), this time using an implicit 

finite difference method rather than the linear and nonlinear 

multistep methods used in the Lee and Papadakis (1980) article. 

The practical advantage of the implicit finite-difference 

technique is that (at the present time) while it is, according to 

the authors, about equally as fast as solving (3.20) by the 

multistep methods, it requires significently less memory.  Several 

propagation examples are worked out, using range independent, 

upslope, and downslope cases.  The bottoms were fast and 

absorptive with densities up to 50% greater than found in the 

water column.  Results were compared with a normal mode program 

(SNAP) and a split-step parabolic equation (PAREQ), both from 

SACLANT.  Propagation loss curves for all three programs are shown 

for the various cases, but detailed comparisons and discussions 

were not attempted. Again, the boundary conditions were handled 

according to use of (3.24a) for the horizontal 
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bottom, that equation's generalization for the range dependent. 

bottoms, and the surface was represented by (3.24b).  The authors 

a.lso point out the time-saving advantage of not having to run the 

parabolic solution into the bottom. 

McDaniel and Lee (1982) attacked the boundary condition at 

the bottom more directly.  If the bottom is found at depth \n^:.z, 

assumed to be flat and horizontal, and to have properties 

independent of range, then application of continuity of pressure 

and the normal component of particle velocity across the interface 

yields 

f1[n,mfa] = f2[n,mb] 3.25a 

.-1 -1 p^ ^f1[n,mt)]/c>z = D~2
x^f2[n,mb]/^z 3.25b 

where the subscripts 1 and 2 refer to the water column and ocean 

bottom respectively.  After performing some Taylor series 

expansions for the second derivative of f with depth in both media 

and making use of the boundary conditions, the authors are able to 

write a parabolic equation which must be satisfied at the 

interface, 

h if [n,!^] /1+ )=/a [n,nu] + — a,[n,mj iu[n,m.] 3.26 

2b   fPl f      fl\ 
+  7 <——  u[n,m.+1] - ( 1+ — i u[n,m, ] + u[n,m -1) 

(_\z)2 [ P2     *      \   f2 •     *        b 
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Away from the interface, of course, (3.20)   nust hold in both 

media.  Thus, (3.26) is solved for hi = rtjj but (3.2U) is solved 

for all other m.  With the bottom included in the problem, througn 

application of the boundary conditions (3.26), it ir necessary to 

allow the depth z to penetrate at least one increment A z below the 

interface. With the single exception of (3.26) for m = p.^, the 

problem is run according to any of the above-mentioned methods; if 

the split-step FFT method is used, however, it must be assumed 

that there is no density change from water into bottom.  An 

example is worked out: a two gradient concave speed of sound 

profile overlies an isospeed fast bottom with density slightly 

more than twice that of the water.  The problem is solved usinu a 

normal mode program, the split-step FFT method, and implicit 

finite-difference methods with and without the interface condition 

(3.26).  For the parabolice equation solutions, a Gaussian-field 

initialization was used.  As seen in Fig. 3 of the article, the 

agreement between normal mode and the implicit finite difference 

with (3.26) nethods is strikingly qood. 
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IV. Comment.s 

While the parabolic equation approximation introduces an 

unavoidable phase-speed error, the effects of this error can be 

mitigated either by solving the pseudoproblem according to the 

mapping (n, z)-*-(n*, z*) developed by Brock et al. (1977), or by the 

modified equation (1.29) obtained by DeSanto, Perkins, and Baer 

(1978). 

Concerning the split-step PFT algorithm, the depth increment 

must be chosen small enough that abrupt changes in the speed of 

sound profile do not introduce significant errors.  This is not 

too serious in the water column, but the number of increments can 

become prohibitive in terms of computational time if there is a 

sharp change in the speed of sound between the water column and 

the bottom.  Further, this approach cannot deal with the change of 

density between water and bottom.  The various approaches 

attempting to accommodate the density change do not appear to be 

very satisfactory, particularly when the bottom is an important 

part of the propagation problem. 

The use of central-difference methods for treating the second 

partial of f_ with depth has opened up an avenue of approach which 

allows a much more realistic, and physically satisfying, treatment 

of a fluid bottom.  Further extension along these lines is to be 

anticipated. 

The parabolic equation method is based on monofrequency, 

continuous wave signals.  This means that the multipath problems 

encountered with transient signals are not considered, and to date 

it has not been possible to isolate time-separated contributions 

I 41 

1  4 

• ••.•••    .•   .•   .•..••.•..-•.    .     •    .-. ••• •      •• ••• '..   -   • .     • ....-.•.•-.        ...    . . v-\-\-] 



y:*. _»v ,;'v;.'.;^ *'.'.'••.'•'.*•'.'• V •'''• _'.••; .i.1."«;.','. "-'!• '.- *•• * • '-• >. -41. •*• -'•".^'T'-T* -"•• ---•-.- 

at the receiver via the parabolic equation.  While in principle 

Fourier synthesis over the required band of frequencies is 

possible, implementation at this time would appear to be extremely 

prohibitive. 

The assumption of cylindrical symmetry is important and 

restrictive whenever an irregular bottom is a significant feature 

of the case of interest.  For example, if propagation over a 

sea-mount is considered, the assumption of cylindrical symmetry 

converts the mount into a "ring" whose center of symmetry is the z 

axis.  This results in the neglect of any azimuthal reflection or 

scattering of the incident sound field from the sides of the 

mount, and can seriously affect comparisons between the 

cylindrically symmetric parabolic equation predictions and 

experimental results. 
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